Introduction
The modules in VizModules are designed to be composed and extended. You can build higher-level modules that add custom logic such as data filtering, transformations, or additional UI controls while reusing the full functionality of the base modules.
This vignette demonstrates how to create a custom module by building
on top of the scatterPlot module.
The Pattern
When building a custom module, you need to handle Shiny’s namespacing correctly. The key insight is:
-
Your module’s custom inputs need to be namespaced
with
NS(id). -
The base module’s UI and server functions should
receive the bare
id, not a namespaced version. -
Data processing that requires access to your
module’s inputs must happen inside a
moduleServer()block. -
The base module’s server should be called
outside that
moduleServer()block to avoid double-namespacing issues.
A Minimal Example
Let’s build a custom module that adds a simple filtering checkbox to
the scatterPlot module.
The UI
library(VizModules)
minimalModuleUI <- function(id) {
ns <- NS(id)
tagList(
h4("Minimal Module Controls"),
# Custom input - uses the module's namespace
checkboxInput(ns("filter_setosa"), "Start with Setosa Only", value = FALSE),
hr(),
# Base module UI - pass the bare 'id', not ns(id)
dittoViz_ScatterPlotInputsUI(id, iris)
)
}
minimalModuleOutput <- function(id) {
# Simply delegate to the base module's output UI
dittoViz_ScatterPlotOutputUI(id)
}Notice that checkboxInput() uses
ns("filter_setosa") to namespace the custom input, while
dittoViz_ScatterPlotInputsUI() receives the bare
id. This ensures the base module creates its inputs in the
correct namespace.
The Server
minimalModuleServer <- function(id, data_reactive) {
# Step 1: Process data inside a moduleServer block
# This gives us access to inputs namespaced to 'id' (our module's inputs)
filtered_data <- moduleServer(id, function(input, output, session) {
reactive({
req(data_reactive())
df <- data_reactive()
# Input specific to this custom module
if (isTRUE(input$filter_setosa)) {
if ("Species" %in% names(df)) {
df <- df[df$Species == "setosa", ]
}
}
df
})
})
# Step 2: Call the base module server OUTSIDE the moduleServer block
# This is critical! If we called this inside the moduleServer above,
# dittoViz_ScatterPlotServer would look for inputs at id-id-inputName instead of id-inputName
dittoViz_ScatterPlotServer(id, filtered_data)
}Why this pattern?
-
moduleServer(id, ...)gives us access toinput$filter_setosa, which is namespaced to our wrapper’sid. - By calling
dittoViz_ScatterPlotServer(id, filtered_data)outside themoduleServer()closure, the base module attaches to the same namespace as our UI, not a nested one. - If we called
dittoViz_ScatterPlotServer()inside themoduleServer()block, it would create nested namespaces likeid-id-x_axis, which wouldn’t match the actual input IDs in the UI.
Putting It Together
ui <- fluidPage(
titlePanel("Minimal Module Example"),
sidebarLayout(
sidebarPanel(
minimalModuleUI("demo")
),
mainPanel(
minimalModuleOutput("demo")
)
)
)
server <- function(input, output, session) {
# Pass a reactive data source to the module
minimalModuleServer("demo", reactive({
iris
}))
}
shinyApp(ui, server)Hiding Base Module Inputs
If your module pre-sets certain parameters, you can hide those inputs from the user to keep them from being changed:
Best Practices
Keep wrapper logic focused: Each wrapper should add a cohesive set of related functionality.
Document the data requirements: If your wrapper expects certain columns or data types, document this clearly.
Use reactive expressions: Use reactive data inputs.
Test the namespace: If inputs aren’t working, check that you’re handling namespaces correctly. A common symptom of namespace issues is that inputs seem to have no effect.
Consider composability: Design your wrappers so they could potentially be wrapped by even higher-level modules.